

Available online at www.sciencedirect.com

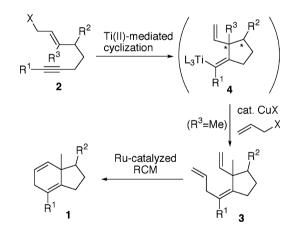
Tetrahedron Letters 47 (2006) 5181-5185

Tetrahedron Letters

Stereoselective construction of 3a-methylhydrindanes starting from 2,7-enynol derivatives based on Ti(II)-mediated cyclization and Ru-catalyzed ring-closing metathesis

Mutsumi Ohkubo, Wataru Uchikawa, Hitomi Matsushita, Aiko Nakano, Takayuki Shirato and Sentaro Okamoto*

Department of Applied Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan


Received 3 April 2006; revised 1 May 2006; accepted 8 May 2006

Abstract—The Ti(II)-mediated cyclization of 3-methyloct-2-en-7-yn-1-ol derivatives 2 proceeded stereoselectively to afford 1-methyl-2-(1-alkylbut-3-enylidene)-1-vinylcyclopentanes 3 after treatment of the resulting alkenyltitaniums with allylbromide in the presence of CuCN, which was readily converted to 3a-methyl-2,3,3a,6-tetrahydro-1*H*-indenes 1 by the Ru-catalyzed ring-closing metathesis.

© 2006 Elsevier Ltd. All rights reserved.

Construction of the 3a-methylhydrindane skeleton that is widely present in natural compounds such as steroids, vitamin D, higher terpenes, and related natural products has received a great deal of attention.¹ Recently, metalpromoted or -catalyzed reactions have attracted interest as a selective means for synthesis of 3a-methylhydrindane from acyclic starting compound(s).² Herein we report an efficient two-step method for the synthesis from acyclic unsaturated starting compounds.

Our synthetic plan for synthesizing 3a-methyl-2,3,3a,6tetrahydro-1*H*-indene (1) is summarized in Scheme 1 $(R^3 = Me)$, which involves divalent titanium-mediated envne-cyclization (intramolecular allyltitanation of alkyne) of enyne 2 followed by copper-catalyzed allylation of the resulting alkenyltitanium compound 4 and the subsequent Ru-catalyzed ring-closing metathesis reaction of the resulting triene 3. Regarding the first step of Scheme 1, we already reported that the reaction of 2 ($R^3 = H$) with a divalent titanium reagent, Ti(O-*i*-Pr)₄/2*i*-PrMgCl,³ proceeds in an intramolecular allyltitanation pathway to provide the corresponding cyclized product type 4 ($R^3 = H$) in excellent yield.⁴ With the results, we expected that we could find appropriate conditions to control 1,2-diastereoselection of the reaction of compound 2 ($R^3 = Me$) with Ti(O-*i*-Pr)₄/2*i*-PrMgCl.⁵

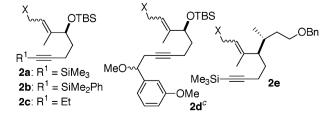
Scheme 1. Synthetic plan.

First, we carried out the Ti(II)-mediated cyclization of enynes 2 ($\mathbb{R}^3 = Me$) having a different leaving group X such as OAc, OP(O)(OEt)₂, OCO₂Et, or Cl, and the following copper-catalyzed allylation of the resulting alkenyltitanium 4 to see the efficiency. Thus, to a solution of 2 (1.0 equiv) and Ti(O-*i*-Pr)₄ (1.3 equiv) in ether was added dropwise *i*-PrMgCl (2.6 equiv, 1.3 M in ether) at -40 °C. After being stirred for 1.5 h at this temperature, to the resulting solution of alkenyltitanium 4 were added allylbromide (1.5 equiv) and a THF solution of CuCN-2LiCl (5 mol %) at 0 °C.⁴ⁱ After warming to room temperature over 3 h, usual aqueous

^{*} Corresponding author. Tel.: +81 45 481 5661; fax: +81 45 413 9770; e-mail: okamos10@kanagawa-u.ac.jp

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.05.030

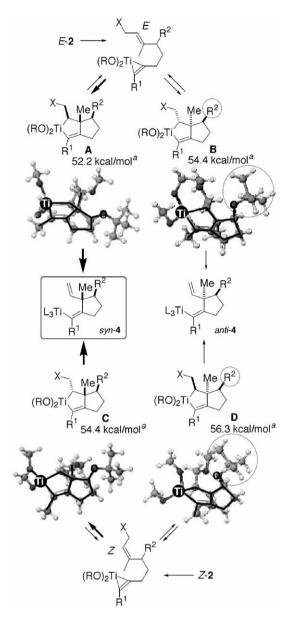
work-up afforded 3. As can be seen from Table 1 summarizing the results, all reactions predominantly produced the cyclized compound 3 with syn configuration regarding the methyl and R^2 groups.⁶ Although the reaction of Z-2a having an OAc or OCO₂Et moiety as a leaving group resulted in poor yield and/or low stereoselectivity (entries 2 and 4), high selectivity and good yield of syn-3a were attained by using 2a having OP(O)(OEt)₂ or Cl, irrespective of the olefin geometry of the starting 2a (entries 5-8). Similarly, the reaction of envnes 2b-d having other alkyne substituents yielded the corresponding triene syn-3 selectively. The enynol derivative **2e** with a secondary alkyl group as \mathbb{R}^2 could also be converted to syn-3e with nearly complete selectivity, where a mixture of E- and Z-isomers was employed as the substrate.


To explain the diastereoselectivity observed in Table 1, we carried out MM2 calculations⁷ using simplified models **A**–**D** for the possible titanacyclopentene intermediates derived from (*E*)- and (*Z*)-**2**, where \mathbb{R}^2 , X, \mathbb{R}^1 in **2** and O-*i*-Pr moieties on the titanium atom were replaced by O-*t*-Bu, OMe, Me, and OMe groups, respectively (Scheme 2). As shown in Scheme 2, it was revealed that models **A** and **C** which can provide the product of the type *syn*-**4**, that is, *syn*-**3**, are more stable in ~2 kcal/ mol than the corresponding isomers **B** and **D**. The pseudo-axial orientation of the \mathbb{R}^2 group (O-*t*-Bu) in models **B** and **D** (indicated by gray circles in Scheme 2) may cause their instability. Use of a better leaving group (X) enhanced the rate of the β -elimination reaction of the titanacycle intermediates. Accordingly, it could increase the overall reaction rate and efficiency of the formation of **4**. The rate enhancement of the β -elimination reaction from **A** or **C** by use of the better leaving group may be larger than that for **B** or **D**, respectively, and it may favorably effect predominant formation of *syn*-**4**.

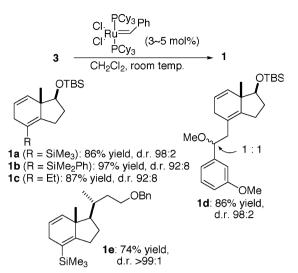
With these results in hand, we next carried out the Ru-catalyzed ring-closing metathesis reaction^{8,9} of the resulting triene **3** to **1** (Scheme 3). Thus, the triene **3** was treated with the first-generation Grubbs catalyst, $Cl_2(Cy_3P)_2Ru=CHPh$, (3–5 mol %) in CH_2Cl_2 at room temperature and the following purification by column chromatography to provide 1^6 in good isolated yield.

2,7-Enynol derivatives **2a–d** ($R_2 = Me$, $R_3 = OTBS$) thus utilized were synthesized according to the procedure summarized in Scheme 4. Thus, diynes **8** were obtained by the reaction of the alkynyllithium compound, derived from the propynoic acid ethyl ester and LDA, with the corresponding alkynylaldehydes **5** and the following silylation of the resulting alcohols. Treatment of **6** with Me₂CuLi provided 7,¹⁰ which was converted to **2** by the reduction with DIBAL and the following esterification or halogenation.

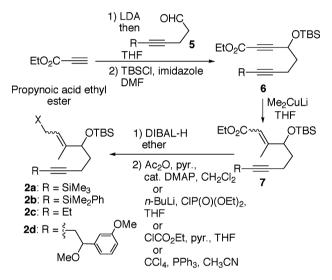
		R ¹ 2 CuCN-2L (5 mol%)		anti- 3	
Entry	2 ^a			syn:anti	Yield (%)
		Х	Geometry		
1	2a	OAc	Ε	95:5	93
2	2a	OAc	Z	93:7	34
3	2a	OCO ₂ Et	E	96:4	72
4	2a	OCO ₂ Et	Z	76:24	25
5	2a	$OP(O)(OEt)_2$	E	97:3	87
6	2a	$OP(O)(OEt)_2$	Z	98:2	90
7	2a	Cl	E	99:1	82
8	2a	Cl	Z	98:2	72
9	2b	$OP(O)(OEt)_2$	E	92:8	84
10	2c	OAc	E	92:8	98
11	2d	OP(O)(OEt) ₂	E	98:2	83
12	2e	$OP(O)(OEt)_2$	Mix. ^b	>99:1	86


Table 1. Ti(II)-mediated cyclization and the following allylation of 2 to 3

^a The structure is shown above.


^b E:Z = 90:10.

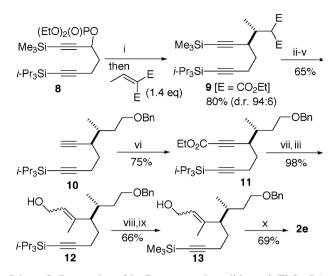
^cA 1:1 mixture of diastereoisomers.



Scheme 2. Postulated reaction mechanism and MM2 calculation of models of titanacycle intermediates: "Energy calculated as RO, R^1 , R^2 and X are MeO, Me, O-*t*-Bu, and MeO, respectively.

Meanwhile, 2e was prepared by the procedure depicted in Scheme 5. Thus, diynol derivative 8 was treated with Ti(O-i-Pr)₄/2i-PrMgCl to generate the corresponding allenyltitanium,³ addition of ethylidene malonate to which provided the Michael addition product 9 in 80%yield with a high diastereomeric ratio (94:6).11 The resulting diester 9 was converted to benzyl ether 10 by decarboxylation and the following reduction, desilylation, and benzylation. The 1-alkyne 11 was carboxylated by treatment with *n*-BuLi and then ClCO₂Et to give 11. which was isolated as a single diastereomer. After methylation of 11 was performed by treatment with Me₂Cu-Li, reduction of the resulting β -methyl- α , β -unsaturated ester with DIBAL afforded alcohol 12, the TIPS group of which was replaced by a TMS moiety to give 13. Esterification of 13 with ClP(O)(OEt)₂ provided 2e (E/Z = 90:10). Although compound 2e thus synthesized

Scheme 3. Ru-catalyzed ring-closing metathesis of 3 to 1.



Scheme 4. Preparation of 2a-d.

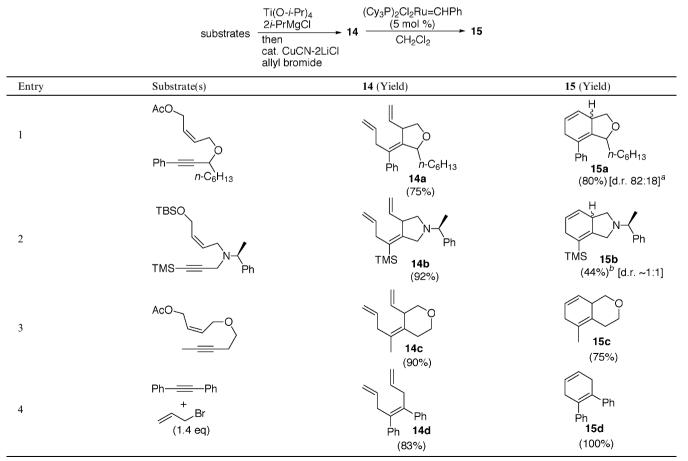
was racemic, an optically active compound can be prepared by starting from optically active 9.11

Closely related reaction conditions to those for the synthesis of 3a-methylhydrindanes **2** were subsequently utilized for synthesis of a variety of 1,4-cyclohexadienes (Table 2), which are useful intermediates as a precursor of the arene ligand in organometallic compounds,¹² a substrate of ene and/or Diels–Alder reactions¹³ and oxidation to the corresponding benzene derivatives. Table 2 summarizes representative results of the synthesis of 1,4-cyclohexadienes **15** from acyclic unsaturated starting materials by the intra- or intermolecular Ti(II)-mediated allyltitanation/Cu-catalyzed allylation and the following Ru-catalyzed ring-closing metathesis reactions of the resulting trienes **14**. Entry 4 exemplified preparation of disubstituted 1,4-cyclohexadienes through the intermolecular Ti(II)-mediated bis-allylation of alkynes.

In summary, we have developed an efficient twostep method for diastereoselective construction of

Scheme 5. Preparation of 2e. Reagents and conditions: (i) Ti(O-*i*-Pr)₄ (1.5 equiv), *i*-PrMgCl (3.0 equiv), ether, -40 °C, 3 h; (ii) LiCl (2.7 equiv), DMSO-H₂O, 135 °C, 10 h; (iii) DIBAL (2 equiv), ether, -20 °C, 1 h; (iv) cat. K₂CO₃, MeOH, rt, 2 h; (v) BnBr (1.5 equiv), NaH (1.5 equiv), THF–DMF, rt, 10 h; (vi) *n*-BuLi (1.5 equiv) then ClCO₂Et (1.8 equiv), THF, -78 °C, 0.5 h; (vii) CuI (1.4 equiv), MeLi (2.8 equiv), THF, -40 °C, 0.5 h; (viii) TBAF (1.5 equiv), THF, rt, 3 h; (ix) *n*-BuLi (2.3 equiv) then TMSCl (2.3 equiv), THF, 0 °C, and then 1 M HCl–MeOH, rt, 0.5 h; (x) ClP(O)(OEt)₂ (2 equiv), pyridine, rt, 0.5–1 h.

3-substituted 3a-methyl-2,3,3a,6-tetrahydro-1*H*-indenes from acyclic unsaturated compound by the tandem Ti(II)-mediated cyclization/Cu-catalyzed allylation and Ru-catalyzed ring-closing metathesis reactions. Further investigation including preparation of optically active compounds¹¹ of the type **1** and their application to natural product synthesis is in progress.


Acknowledgments

We thank the Ministry of Education, Culture, Sports, Science and Technology (Japan) for financial support. We thank Professor Raymond J. Giguere, Skidmore College, for valuable comments and discussion.

References and notes

- Zhu, G.-D.; Okamura, W. H. Chem. Rev. 1995, 95, 1877; Jankowski, P.; Marczak, S.; Wicha, J. Tetrahedron 1998, 54, 12071.
- For examples, see: Wender, P. A.; Smith, T. E. J. Org. Chem. 1995, 60, 2962; Taber, D. F.; Zhang, W.; Campbell, C. L.; Rheingold, A. L.; Incarvito, C. D. J. Am. Chem. Soc. 2000, 122, 4813; Taber, D. F.; Malcolm, S. C. J. Org. Chem. 2001, 66, 944; Taber, D. F.; Jiang, Q.; Chen, B.;

Table 2. Other representative results of synthesis of cyclic compounds having a 1,4-cyclohexadiene structure

^a Stereochemistry was not confirmed.

^bReaction was carried out in toluene at 70 °C for 3 days.

Zhang, W.; Campbell, C. L. J. Org. Chem. 2002, 67, 4821; Jiang, X.; Covey, D. F. J. Org. Chem. 2002, 67, 4893; Song, Y.; Okamoto, S.; Sato, F. Tetrahedron Lett. 2003, 44, 2113; Herrmann, H.; Kotora, M.; Budesínsky, M.; Sÿaman, D.; Císarova, I. Org. Lett. 2006, 8, 1315, and references cited therein.

- Sato, F.; Urabe, H.; Okamoto, S. Chem. Rev. 2000, 100, 2835; Kulinkovich, O. G.; de Meijere, A. Chem. Rev. 2000, 100, 2789; Eisch, J. J. J. Organomet. Chem. 2001, 617–618, 148; Sato, F.; Okamoto, S. Adv. Synth. Catal. 2001, 343, 759; Sato, F.; Urabe, H. In Titanium and Zirconium in Organic Synthesis; Marek, I., Ed.; Wiley: Weinheim, Germany, 2002; pp 319–354.
- (a) Takayama, Y.; Gao, Y.; Sato, F. Angew. Chem., Int. Ed. 1997, 36, 851; (b) Takayama, Y.; Okamoto, S.; Sato, F. Tetrahedron Lett. 1997, 38, 8351; (c) Yamazaki, T.; Urabe, H.; Sato, F. Tetrahedron Lett. 1998, 39, 7333; (d) Takayama, Y.; Okamoto, S.; Sato, F. J. Am. Chem. Soc. 1999, 121, 3559; (e) Okamoto, S.; Subburaj, K.; Sato, F. J. Am. Chem. Soc. 2000, 122, 11244; (f) Delas, C.; Urabe, H.; Sato, F. Tetrahedron Lett. 2001, 42, 4147; (g) Okamoto, S.; Subburaj, K.; Sato, F. J. Am. Chem. Soc. 2001, 123, 4857; (h) Song, Y.; Okamoto, S.; Sato, F. Tetrahedron Lett. 2002, 43, 6511; (i) Song, Y.; Takayama, Y.; Okamoto, S.; Sato, F. Tetrahedron Lett. 2003, 44, 653.
- Our previous research on synthesis of vitamin D: Hanazawa, T.; Inamori, H.; Masuda, T.; Okamoto, S.; Sato, F. *Org. Lett.* 2001, *3*, 2205; Hanazawa, T.; Wada, T.; Masuda, T.; Okamoto, S.; Sato, F. *Org. Lett.* 2001, *3*,

3975; Hanazawa, T.; Koyama, A.; Nakata, K.; Okamoto, S.; Sato, F. J. Org. Chem. **2003**, 68, 9767.

- 6. Stereochemistry was determined by NOE-DIF experiments.
- 7. The MM2 calculations resulting in the data in Scheme 2 were performed using CAChe software (Quantum 4.9 for Macintosh, Fujitsu Ltd).
- Reviews for ring-closing metathesis: (a) Fürstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012; (b) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18; (c) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592; (d) Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003, 42, 1900.
- For the related reaction, see: Jo, H.; Lee, J.; Kim, H.; Kim, S.; Kim, D. *Tetrahedron Lett.* 2003, 44, 7043.
- 10. After the reaction with Me₂CuLi at ≤ -40 °C, quenching at 0 °C resulted in formation of a mixture of *E* and *Z* isomers, which could be separated by column chromatography.
- 11. Song, Y.; Okamoto, S.; Sato, F. Org. Lett. 2001, 3, 3543.
- For examples, see: Wendicke, S. B.; Burri, E.; Scopelliti, R.; Severin, K. Organometallics 2003, 22, 1894; Cheung, F. K.; Hayes, A. M.; Hannedouche, J.; Yim, A. S. Y.; Wills, M. J. Org. Chem. 2005, 70, 3188.
- (a) Giguere, R. K.; Namen, A. M.; Lopez, B. O.; Arepally, A.; Ramos, D. E.; Majetich, G.; Defauw, J. *Tetrahedron Lett.* **1987**, *28*, 6553; (b) Goldberg, D. R.; Hansen, J. A.; Giguere, R. J. *Tetrahedron Lett.* **1993**, *34*, 8003.